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fast thinking initializer serves to initialize the sampling of the slow thinking solver, and the solver refines the initial output by an iterative
algorithm. The solver learns from the difference between the refined output and the observed output, while the initializer learns from how
the solver refines its initial output. We demonstrate the effectiveness of the proposed method on various conditional learning tasks, e.g.,
class-to-image generation, image-to-image translation, and image recovery. The advantage of our method over GAN-based methods is
that our method is equipped with a slow thinking process that refines the solution guided by a learned objective function.
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1 INTRODUCTION

1.1 Background and motivation

WHEN we learn to solve a problem, we can learn to directly
map the problem to the solution. This amounts to fast

thinking, which underlies reflexive or impulsive behavior, or muscle
memory, and it can happen when one is emotional or under time
constraint. We may also learn an objective function or value
function that assigns values to candidate solutions, and we optimize
the objective function by an iterative algorithm to find the most
valuable solution. This amounts to slow thinking, which underlies
planning, search or optimal control, and it can happen when one is
calm or have time to think through.

In this paper, we study the supervised learning of the conditional
distribution of a high-dimensional output given an input, where
the output and input may belong to two different domains. For
instance, the output may be an image, while the input may be a
class label, a sketch, or an image from another domain. The input
defines the problem, and the output is the solution. We also refer
to the input as the source or condition, and the output as the target.

We solve this problem by learning two models cooperatively.
One model is an initializer. It generates the output directly by a
non-linear transformation of the input as well as a noise vector,
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where the noise vector is to account for variability or uncertainty in
the output. This amounts to fast thinking because the conditional
generation is accomplished by direct mapping. The other model is
a solver. It learns an objective function in the form of a conditional
energy function, so that the output can be generated by optimizing
the objective function, or more rigorously by sampling from the
conditional energy-based model, where the sampling is to account
for variability and uncertainty. This amounts to slow thinking
because the sampling is accomplished by an iterative algorithm
such as Langevin dynamics [1], which is an example of Markov
chain Monte Carlo (MCMC) [2], [3]. We propose to learn the two
models jointly, where the initializer serves to initialize the sampling
process of the solver, and the solver refines the initial solution by an
iterative algorithm. The solver learns from the difference between
the refined solution and the observed solution, while the initializer
learns from the difference between the initial solution and the
refined solution.

Figure 1 conveys the basic idea. The algorithm iterates two
steps, a solving step and a learning step. The solving step consists
of two stages: Initialize: The initializer generates the initial solution
according to the given condition by direct mapping, such as
ancestral sampling. Solve: The solver refines the initial solution
according to the same condition by an iterative algorithm, such
as Langevin sampling, which minimizes the objective function.
The learning step also consists of two parts: Learn-mapping: The
initializer updates its mapping by learning from how the solver
refines its initial solution, for the purpose of providing better initial
solution for the solver in the next iteration. Learn-objective: The
solver updates its objective function by shifting its high value
region from the refined solution to the observed solution, for the
sake of matching the refined solution to the observed one in terms
of value in the next iteration.

Figure 2(a) illustrates Learn-mapping step. In the Initialization
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Fig. 1. Diagram of fast thinking and slow thinking conditional learning.
Given a condition, the initializer initializes the solver, which refines
the initial solution. The initializer provides the initial solution via direct
mapping (see 1©), i.e., ancestral sampling, which is a fast thinking
process, while the solver refines the initial solution via Langevin sampling
that optimizes the objective function ( 2©), which is a slow thinking process.
The initializer learns the mapping from the solver’s refinement (see
3©), while the solver learns the objective function by comparing to the
observed solution (see 4©).

step, the initializer generates the latent noise vector, which, together
with the input condition, is mapped to the initial solution. In the
Learn-mapping step, the initializer updates its parameters so that
it maps the input condition and the latent vector to the refined
solution, in order to absorb the refinement made by the solver.
Because the latent vector is known, it does not need to be inferred
and the learning is easy. In other words, keeping the same mapping
source, the initializer shifts its mapping target from the initial
solution toward the refined solution.

Figure 2(b) illustrates Learn-objective step. In the Solve step,
the solver finds the refined solution at high value region around
a mode of the objective function. In the Learn-objective step, the
solver updates its parameters so that the objective function shifts its
high value region around the mode toward the observed solution,
so that in the next iteration, the refined solution will get closer to
the observed solution.

The solver shifts its mode toward the observed solution, while
inducing the initializer maps the input condition and the latent
vector to its mode. Learning an initializer is like mimicking “how”,
while learning a solver is like trying to understand “why” in terms
of goal or value underlying the action.

Why slow thinking solver? The reason we need a solver in
addition to an initializer is that it is often easier to learn the objective
function than learning to generate the solution directly, since it
is always easier to demand or desire something than to actually
produce something directly. Because of its relative simplicity, the
learned objective function can be more generalizable than the
learned initializer. For instance, in an unfamiliar situation, we tend
to be tentative, relying on slow thinking planning rather than fast
thinking habit.

Efficiency. Even though we use the wording “slow thinking”, it
is only relative to “fast thinking”. In fact, the slow thinking solver
is usually fast enough, especially if it is jumpstarted by fasting
thinking initializer, and there is no problem scaling up our method
to big datasets. Therefore the time efficiency of the slow thinking
method is not a concern.

Student-teacher v.s. actor-critic. We may consider the initial-
izer as a student model, and the solver as a teacher model. The

(a) Learn-mapping by mapping shift.

(b) Learn-objective by objective shift.

Fig. 2. Learning step. (a) Learn-mapping by mapping shift: In the initialize
stage, the initializer generates the latent noise vector (see 1©), and maps
it along with the input condition to the initial solution (see 2©). The solver
outputs the refined solution after refining the initial solution (see 3©). The
learning of the initializer is to shift its mapping from the initial solution
toward the refined solution (see 4©). (b) Learn-objective by objective
shift: In the solve stage, the solver finds high value region or mode in
its objective function via an iterative algorithm (see 1©). Those modes
corresponds to the refined solution. The learning of the solver is to shift
the high value region or mode of its objective function from the refined
solution toward the observed solution (see 2©).

teacher refines the initial solution of the student by a refinement
process, and distills the refinement process into the student. This is
different from the actor-critic relationship in (inverse) reinforcement
learning [4], [5], [6] because the critic does not refine the actor’s
solution by a slow thinking process.

Cooperative learning v.s. adversarial learning. Our frame-
work, belonging to cooperative learning [7], [8], jointly learns a
conditional energy-based model as the slow thinking solver and
a conditional generator as the fast thinking initializer. This is
essentially different from the conditional generative adversarial
net (cGAN) [9], [10], [11], where a conditional discriminator is
simultaneously learned to help train the conditional generator. Our
framework simultaneously trains both models and keeps both of
them after training, while cGAN discards its discriminator once
the generator model is well trained. In other words, our framework
trains both the slow thinking solver (i.e., the energy-based model)
and the fast thinking initializer (i.e., the generator), while cGAN
only desires a fast thinking model (i.e., the generator). Thus, the
advantage of our method over cGAN is that our method is equipped
with a refinement process guided by the learned energy-based
model.

We apply our learning method to various conditional learning
tasks, such as class-to-image generation, image-to-image transla-
tion, image inpainting, etc. Our experiments show that the proposed
method is effective compared to other methods, such as those based
on GANs [9].
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Amortized computation and temporal difference learning.
The solver is an iterative computing process. The initializer is an
amortization of this process. The learning of the initializer can be
considered temporal difference learning, where the finite steps of
refinements produce the temporal difference to be distilled into the
initializer.

Learning from external and internal data. The learning of
the conditional energy function is from the training data, which
we may call the external data. The learning of the initializer can
be considered as learning from the internal data produced by the
computational process of the solver.

Policy, value, and control. The initializer is similar to a policy
network. The solver is similar to an iterative optimal control or
planning process based on a value network. The conditional energy
function is similar to a cost function.

Vector-valued initializer and scalar-valued conditional
energy function. The initializer learns a mapping from an input
to a high-dimensional output. The solver learns a scalar-valued
conditional energy function. It is much easier to learn a scalar-
valued function than a high-dimensional vector-valued mapping, so
that the iterative refinement process guided by the learned energy
function improves the initializer.

Contributions. This paper proposes a novel method for
supervised learning of high-dimensional conditional distributions
by learning a fast thinking initializer and a slow thinking solver.
We show the effectiveness of our method on conditional image
generation and recovery tasks. Perhaps more importantly,

• We propose a different method for conditional learning
than GAN-based methods. Unlike GANs, our method
has a learned value function (i.e., the energy function
in the conditional energy-based model) to guide a slow
thinking process to refine the solution of the initializer (i.e.,
conditional generator). We demonstrate the benefit of such
a refinement on various image synthesis tasks.

• The proposed framework is generic and can be applied
to a broad range of artificial intelligence problems that
can be modeled via a conditional learning framework, e.g.,
inverse optimal control, etc. The interaction between the
fast thinking initializer and the slow thinking solver can be
of interest to cognitive science.

• This is the first paper to study conditional learning via a
model-based Initializer-solver framework. It is fundamental
and important to AI community.

1.2 Related work
The following themes are closely related to our research. We will
briefly review each of them and connect them with our work.

Conditional adversarial learning. Generative Adversarial Net-
works (GANs) [9] proposed by Goodfellow et al. have demonstrated
promising results of image generation in [12], which belongs to
unconditional learning, in which no supervision signals are used.
With the success of adversarial learning, the conditional version of
GAN (i.e., conditional GAN or cGAN) [13] has become a popular
framework for supervised conditional learning, and it has been
successfuly appplied to different scenarios that can be modeled
in the context of conditional learning. For example, [11], [14]
use conditional GANs for image synthesis based on class labels.
[13], [15] study text-conditioned image synthesis. Other examples
include image-to-image translation [10], semantic-image-to-photo
translation [16], super-resolution [17], and video-to-video synthesis

[18], etc. Our work studies similar problems. The major difference
between the conditional GAN and our method is that ours is based
on a conditional energy function that serves as an objective function
and an iterative algorithm, which is the Langevin dynamics guided
by this objective function. This iterative process corresponds to
slow thinking. Existing adversarial learning methods do not involve
this slow thinking refinement process.

Cooperative learning. Just as the conditional GAN is inspired
by the original GAN [9], our learning method is inspired by the
recent work of generative cooperative networks (CoopNets) [7], [8],
where the models are unconditioned. Specifically, the CoopNets
framework consists of an unconditional energy-based model and an
unconditional latent variable model, and jointly trains both models
via MCMC teaching [7], where the latent variable model learns to
initialize the MCMC sampling of the energy-based model. While
unconditioned generation is interesting, conditional generation and
recovery is much more useful in applications. It is also much more
challenging because we need to incorporate the input condition into
both the initializer and the solver. Thus our method is a substantial
generalization of the CoopNets [7], and our extensive experiments
convincingly demonstrate the usefulness of our method, which in
the meantime provides a different methodology from GAN-based
methods. Our work is the first to study conditional cooperative
learning, and propose the fast thinking and slow thinking framework
as a conditional version of CoopNets.

Conditional random field. The objective function and the
conditional energy-based model can also be considered a form
of conditional random field [19]. Unlike traditional conditional
random field, our conditional energy function is defined by a
trainable deep network, and its MCMC sampling process is
jumpstarted by a non-iterative initializer.

Energy-based generative neural nets. Our slow thinking solver
is related to energy-based generative neural nets [20], [21], [22],
[23], [24], [25], [26], which are energy-based models (EBMs)
with energy functions parameterized by deep neural nets, and
trained by MCMC-based maximum likelihood learning. [20] is
the first to learn EBMs parametrized by modern ConvNets by
maximum likelihood estimation via Langevin dynamics, and also
investigates ReLU [27] with Gaussian reference in the proposed
model that is called generative ConvNet. [21] proposes a multi-grid
sampling and learning method for training generative ConvNets.
The spatial-temporal generative ConvNet proposed in [22], [23]
further generalizes the generative ConvNet of images in [20]
to modeling dynamic patterns, e.g., videos or image sequences,
by parameterizing the energy function with a bottom-up spatial-
temporal ConvNet. [24], [28] develops a volumetric version of the
energy-based generative neural net, which is called generative
VoxelNet, for 3D object patterns. Recently, [25] investigates
training the energy-based generative ConvNet with a short-run
MCMC. All models mentioned above are unconditioned EBMs,
while our solver is a conditioned EBM jointly trained with
a conditional latent variable model serving as an approximate
conditional sampler.

Inverse reinforcement learning. Our method is related to inverse
reinforcement learning and inverse optimal control [4], [5], where
the initializer corresponds to the policy, and the solver corresponds
to the planning or optimal control. Unlike the action space in
reinforcement learning, the output in our work is of a much higher
dimension, a fact that also distinguishes our work from common
supervised learning problem such as classification. As a result,
the initializer needs to transform a latent noise vector (along with
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an input condition) to generate the initial solution, and this is
different from the policy in reinforcement learning, where the
policy is defined by the conditional distribution of action given
state, without resorting to a latent vector.

Unsupervised conditional learning. Some methods study un-
supervised conditional learning, where the inputs and outputs are
unpaired in the training set. For example, CycleGAN [29] jointly
trains two GANs and enforces a cycle-consistency regularization
between them to learn a two-way translator between two image col-
lections in the absence of paired examples. AlignFlow [30] adopts
normalizing flow models [31], [32] to solve this problem. Recently,
CycleCoopNets [33] tackles the unpaired translation problem based
on the framework of cooperative learning. Our work belongs to
supervised conditional learning, where the correspondence between
source domain and target domain is given and used as supervision
during training.

2 COOPERATIVE CONDITIONAL LEARNING

Let Y be the D-dimensional output signal of the target domain,
and C be the input signal of the source domain, where “C” stands
for “condition”. C defines the problem, and Y is the solution. Our
goal is to learn the conditional distribution p(Y |C) of the target
signal (solution) Y given the source signal C (problem) as the
condition. We shall learn p(Y |C) from the training dataset of the
pairs {(Yi, Ci), i = 1, ..., n} with the fast thinking initializer and
slow thinking solver.

2.1 Slow thinking solver
The solver is based an objective function or value function
f(Y,C; θ) defined on (Y,C). f(Y,C; θ) can be parametrized
by a bottom-up convolutional network (ConvNet) where θ collects
all the weight and bias parameters. Serving as a negative energy
function, f(Y,C; θ) defines a joint energy-based model [20]:

p(Y,C; θ) =
1

Z(θ)
exp [f(Y,C; θ)] , (1)

where Z(θ) =
∫

exp [f(Y,C; θ)] dY dC is the normalizing
constant.

Fixing the source signal C, f(Y,C; θ) defines the value of
the solution Y for the problem defined by C, and −f(Y,C; θ)
defines the conditional energy function. The conditional probability
is given by

p(Y |C; θ) =
p(Y,C; θ)

p(C; θ)
=

p(Y,C; θ)∫
p(Y,C; θ)dY

=
1

Z(C, θ)
exp [f(Y,C; θ)] , (2)

where Z(C, θ) = Z(θ)p(C; θ). The learning of this model seeks
to maximize the conditional log-likelihood function

L(θ) =
1

n

n∑
i=1

log p(Yi|Ci; θ), (3)

whose gradient L′(θ) is
n∑
i=1

{
∂

∂θ
f(Yi, Ci; θ)− Ep(Y |Ci,θ)

[
∂

∂θ
f(Y,Ci; θ)

]}
, (4)

where Ep(Y |C;θ) denotes the expectation with respect to
p(Y |C, θ). The identity underlying (4) is ∂

∂θ logZ(C, θ) =
Ep(Y |C,θ)

[
∂
∂θf(Y,C; θ)

]
.

The expectation in (4) is analytically intractable and can
be approximated by drawing samples from p(Y |C, θ) and then
computing the Monte Carlo average. This can be solved by an
iterative algorithm, which is a slow thinking process. One solver
is the Langevin dynamics for sampling Y ∼ p(Y |C, θ). It iterates
the following step:

Yτ+1 = Yτ +
δ2

2

∂

∂Y
f(Yτ , C; θ) + δUτ , (5)

where τ indexes the time steps of the Langevin dynamics, δ is the
step size, and Uτ ∼ N(0, ID) is Gaussian white noise. D is the
dimensionality of Y . A Metropolis-Hastings acceptance-rejection
step can be added to correct for finite δ. The Langevin dynamics is
gradient descent on the energy function, plus noise for diffusion so
that it samples the distribution instead of being trapped in the local
modes.

For each observed condition Ci, we run the Langevin dynamics
according to (5) to obtain the corresponding synthesized example
Ỹi as a sample from p(Y |Ci, θ). The Monte Carlo approximation
to L′(θ) is

L′(θ) ≈ ∂

∂θ

[
1

n

n∑
i=1

f(Yi, Ci; θ)−
1

n

n∑
i=1

f(Ỹi, Ci; θ)

]
. (6)

We can then update θ(t+1) = θ(t) + γtL
′(θ(t)).

Objective shift: The above gradient ascent algorithm is to
increase the average value of the observed solutions versus that of
the refined solutions, i.e., on average, it shifts high value region
or mode of f(Y,Ci; θ) from the generated solution Ỹi toward the
observed solution Yi.

The convergence of such a stochastic gradient ascent algorithm
has been studied by [34].

2.2 Fast thinking initializer
The initializer is of the following form:

X ∼ N(0, Id), Y = g(X,C;α) + ε, ε ∼ N(0, σ2ID), (7)

where X is the d-dimensional latent noise vector, and g(X,C;α)
is a top-down ConvNet defined by the parameters α. The ConvNet g
maps the observed condition C and the latent noise vector X to the
signal Y directly. If the source signal C is of high dimensionality,
we can parametrize g by an encoder-decoder structure: we first
encode C into a latent vector Z, and then we map (X,Z) to Y
by a decoder. Given C, we can generate Y from the conditional
generator model by direct sampling, i.e., first sampling X from its
prior distribution, and then mapping (X,Z) into Y directly. This
is fast thinking without iteration.

We can learn the initializer from the training pairs
{(Yi, Ci), i = 1, ..., n} by maximizing the conditional log-
likelihood L(α) = 1

n

∑n
i=1 log p(Yi|Ci, α), where p(Y |C,α) =∫

p(X)p(Y |C,X,α)dX . The learning algorithm iterates the
following two steps. (1) Sample Xi from p(Xi|Yi, Ci, α) by
Langevin dynamics. (2) Update α by gradient descent on
1
n

∑n
i=1 ‖Yi − g(Xi, Ci;α)‖2. See [35] for details.

2.3 Cooperative training of initializer and solver
The initializer and the solver can be trained jointly as follows.

(1) The initializer supplies initial samples for the MCMC
of the solver. For each observed condition input Ci, we first
generate X̂i ∼ N(0, Id), and then generate the initial solution
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Ŷi = g(X̂i, Ci;α) + εi. If the current initializer is close to the
current solver, then the generated {Ŷi, i = 1, ..., n} should be
a good initialization for the solver to sample from p(Y |Ci, θ),
i.e., starting from the initial solutions {Ŷi, i = 1, ..., n}, we
run Langevin dynamics for l steps to get the refined solutions
{Ỹi, i = 1, ..., n}. These {Ỹi} serve as the synthesized examples
from p(Y |Ci) and are used to update θ in the same way as we
learn the solver model in equation (6) for objective shifting.

(2) The initializer then learns from the MCMC. Specifically, the
initializer treats {(Ỹi, Ci), i = 1, ..., n} produced by the MCMC
as the training data. The key is that these {Ỹi} are obtained by the
Langevin dynamics initialized from the {Ŷi, i = 1, ..., n}, which
are generated by the initializer with known latent noise vectors
{X̂i, i = 1, ..., n}. Given {(X̂i, Ỹi, Ci), i = 1, ..., n}, we can
learn α by minimizing 1

n

∑n
i=1 ‖Ỹi − g(X̂i, Ci;α)‖2, which is a

nonlinear regression of Ỹi on (X̂i, Ci) . This can be accomplished
by gradient descent

∆α ∝ −(Ỹi − g(X̂i, Ci;α)
∂

∂α
g(X̂i, Ci;α). (8)

Mapping shift: Initially g(X,C;α) maps (X̂i, Ci) to the
initial solution Ŷi. After updating α, g(X,C;α) maps (X̂i, Ci)
to the refined solution Ỹi. Thus the updating of α absorbs the
MCMC transitions that change Ŷi to Ỹi. In other words, we distill
the MCMC transitions of the refinement process into g(X,C;α).

Algorithm 1 presents a description of the conditional learning
with two models. See Figures 1 and 2 for illustrations.

Both computations can be carried out by back-propagation, and
the whole algorithm is in the form of alternating back-propagation.

Algorithm 1 Cooperative conditional learning
Input:

(1) training examples {(Yi, Ci), i = 1, ..., n}
(2) numbers of Langevin steps l
(3) number of learning iterations T .

Output:
(1) learned parameters θ and α,
(2) generated examples {Ŷi, Ỹi, i = 1, ..., n}.

1: t← 0, initialize θ and α.
2: repeat
3: Initialization by mapping: For i = 1, ..., n, generate
X̂i ∼ N(0, Id), and generate the initial solution Ŷi =
g(X̂i, Ci;α

(t)) + εi.
4: Solve based on objective: For i = 1, ..., n, starting from
Ŷi, run l steps of Langevin dynamics to obtain the refined
solution Ỹi, each step following equation (5).

5: Learn-objective by objective shift: Update θ(t+1) =
θ(t) + γtL

′(θ(t)), where L′(θ(t)) is computed according to
(6).

6: Learn-mapping by mapping shift: Update α(t+1) =
α(t) + γt∆α

(t), where ∆α(t) is computed according to (8)
7: Let t← t+ 1
8: until t = T

In Algorithm 1, the conditional energy- model is the primary
model for conditional synthesis or recovery by MCMC sampling.
The conditional generator model plays an assisting role to initialize
the MCMC sampling.

3 THEORETICAL UNDERPINNING

This section presents theoretical underpinnings of the model and
the learning algorithms presented in the previous section. Readers
who are more interested in applications and experiments can jump
to the next section.

3.1 Kullback-Leibler divergence

The Kullback-Leibler divergence between two distributions p(x)
and q(x) is defined as KL(p‖q) = Ep[log(p(X)/q(X))].

The Kullback-Leibler divergence between two conditional
distributions p(y|x) and q(y|x) is defined as

KL(p‖q) = Ep

[
log

p(Y |X)

q(Y |X)

]
(9)

=

∫
log

p(y|x)

q(y|x)
p(x, y)dxdy, (10)

where the expectation is over the joint distribution p(x, y) =
p(x)p(y|x).

3.2 Slow thinking solver

The slow thinking solver model is

p(Y |C; θ) =
p(Y,C; θ)

p(C; θ)
=

p(Y,C; θ)∫
p(Y,C; θ)dY

=
1

Z(C; θ)
exp [f(Y,C; θ)] , (11)

where

Z(C; θ) =

∫
exp [f(Y,C; θ)] dY (12)

is the normalizing constant and is analytically intractable.
Suppose the training examples {(Yi, Ci), i = 1, ..., n} are

generated by the true joint distribution f(Y,C), whose conditional
distribution is f(Y |C).

For large sample n→∞, the maximum likelihood estimation
of θ is to minimize the Kullback-Leibler divergence

min
θ

KL(f(Y |C)‖p(Y |C; θ)). (13)

In practice, the expectation with respect to f(Y,C) is
approximated by the sample average. The difficulty with
KL(f(Y |C)‖p(Y |C; θ)) is that the logZ(C; θ) term is analyt-
ically intractable, and its derivative has to be approximated by
MCMC sampling from the model p(Y |C; θ).

3.3 Fast thinking initializer

The fast thinking initializer is

X ∼ N(0, Id), Y = g(X,C;α) + ε, ε ∼ N(0, σ2ID). (14)

We use the notation q(Y |C;α) to denote the resulting conditional
distribution. It is obtained by

q(Y |C;α) =

∫
q(X)q(Y |X,C;α)dX, (15)

which is analytically intractable.
For large sample, the maximum likelihood estimation of α is

to minimize the Kullback-Leibler divergence

min
α

KL(f(Y |C)‖q(Y |C;α)). (16)
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Again, the expectation with respect to f(Y,C) is approximated by
the sample average. The difficulty with KL(f(Y |C)‖q(Y |C;α))
is that log q(Y |C;α) is analytically intractable, and its derivative
has to be approximated by MCMC sampling of the posterior
q(X|Y,C;α).

3.4 Objective shift: modified contrastive divergence

Let M(Y1|Y0, C; θ) be the transition kernel of the finite-step
MCMC that refines the initial solution Y0 to the refined solution
Y1. Let (Mθq)(Y1|C;α) =

∫
M(Y1|Y0, C; θ)q(Y0|C;α)dY0 be

the distribution obtained by running the finite-step MCMC from
q(Y0|C;α).

Given the current initializer q(Y |C;α), the objective shift
updates θt to θt+1, and the update approximately follows the
gradient of the following modified contrastive divergence [7], [36]

KL(f(Y |C)‖p(Y |C; θ))

−KL((Mθtq)(Y |C;α)‖p(Y |C; θ)). (17)

Compare (17) with the MLE (11), (17) has the second divergence
term KL((Mθtq)(Y |C;α)‖p(Y |C; θ)) to cancel the logZ(C; θ)
term, so that its derivative is analytically tractable. The learning
is to shift p(Y |C; θ) or its high value region around the mode
from the refined solution provided by (Mθtq)(Y |C;α) toward the
observed solution given by f(Y |C). If (Mθtq)(Y |C;α) is close
to p(Y |C; θ), then the second divergence is close to zero, and the
learning is close to MLE update.

3.5 Mapping shift: distilling MCMC

Given the current solver model p(Y |C; θ), the mapping shift
updates αt to αt+1, and the update approximately follows the
gradient of

KL((Mθq)(Y |C;αt)‖q(Y |C;α)). (18)

This update distills the MCMC transition Mθ into the model
q(Y |C;α). In the idealized case where the above divergence can
be minimized to zero, then q(Y |C;αt+1) = (Mθq)(Y |C;αt).
The limiting distribution of the MCMC transition Mθ is p(Y |C; θ),
thus the cumulative effect of the above update is to lead q(Y |C;α)
close to p(Y |C; θ).

Compare (18) to the MLE (14), the training data distribution
becomes (Mθq)(Y |C;αt) instead of f(Y |C). That is, q(Y |C;α)
learns from how Mθ refines it. The learning is accomplished by
mapping shift where the generated latent vector X is known, thus
does not need to be inferred (or the Langevin inference algorithm
can initialize from the generated X). In contrast, if we are to learn
from f(Y |C), we need to infer the unknown X by sampling from
the posterior distribution.

In the limit, if the algorithm converges to a
fixed point, then the resulting q(Y |C;α) minimizes
KL((Mθq)(Y |C;α)‖q(Y |C;α)), that is, q(Y |C;α) seeks
to be the stationary distribution of the MCMC transition Mθ,
which is p(Y |C; θ).

If the learned q(Y |C;α) is close to p(Y |C; θ), then
(Mθtq)(Y |C;α) is even closer to p(Y |C; θ). Then the learned
p(Y |C; θ) is close to MLE because the second divergence term in
(17) is close to zero.

4 EXPERIMENTS

Project page: The code and more results can be found at http:
//www.stat.ucla.edu/~jxie/CCoopNets/

We test the proposed framework for conditional learning on a
variety of vision tasks. According to the form of the conditional
learning, we organize the experiments into two parts. In the first
part (Experiment 1), we study conditional learning for a mapping
from category (i.e., one-hot vector) to image, e.g., image generation
conditioned on image class, while in the second part (Experiment
2), we study conditional learning for a mapping from image to
image, e.g., image-to-image translation. We propose a specific
network architecture of our model in each experiment due to the
different forms of input-output domains. Unlike the unconditioned
cooperative learning framework [7], [8], the conditioned framework
needs to find a proper way to fuse the condition input C into both
the bottom-up ConvNet f in the solver and the top-down ConvNet
g in the initializer, for the sake of capturing accurate conditioning
information. An improper design can cause not only unrealistic but
also condition-mismatched synthesized results.

4.1 Experiment 1: Category→ Image
4.1.1 Network architecture
We start form learning the conditional distribution of an image
given a category or class label. The category information is encoded
as a one-hot vector. The network architectures of the models in this
experiment are given as follows.

In the initializer, we can concatenate the one-hot vector C with
the latent noise vector X sampled from N(0, Id) as the input of the
decoder Ψ([X,C]) to build a conditional generator g(X,C;α).
The generator maps the input into image Y by several layers of
deconvolutions. We call this setting “early concatenation”. See
Figure 3(1) for an illustration. We can also adopt an architecture
with “late concatenation”, where the concatenation happens in the
intermediate layer of the initializer. Specifically, we can first sample
the latent noise vector X from Gaussian noise prior N(0, Id), and
then decode X to an intermediate result with spatial dimension
b×b by a decoder Ψ1(X). The decoder consists of several layers of
deconvolutions, each of which is followed by batch normalization
[37] and ReLU non-linear transformation. We then replicate the
one-hot vector C spatially and perform a channel concatenation
with the intermediate output. After that, we generate the target
image Y from the concatenated result [Ψ1(X), C] by another
decoder Ψ2([Ψ1(X), C]) that consists of several deconvolution
layers. Batch normalization and ReLU layer are used between two
consecutive deconvolution layers, and tanh non-linearity is added
at the bottom layer. g(X,C;α) is the composition of Ψ1 and Ψ2.
See Figure 3(2) for an illustration. The details of the networks will
be mentioned in the section of each experiment.

To build the value function for the solver model, in the setting
of “early concatenation”, we first replicate the condition one-hot
vector C spatially and perform a depth concatenation with image
Y , and then map them to a scalar by an encoder, Φ([Y,C]), that
consists of several layers of convolutions and ReLU non-linear
transformations. The value function f(Y,C; θ) is designed as
Φ([Y,C])−‖Y ‖2/2s2. This corresponds to an exponential tilting
form in [20],

p(Y,C; θ) =
1

Z(θ)
exp [Φ(Y,C; θ)] p0(Y ), (19)

where p0(Y ) is Gaussian white noise distribution, i.e., p0(Y ) ∝
exp(−‖Y ‖2/2s2), and s is a hyperparameter for the standard



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 3. Network architecture of initializer (category-to-image synthesis).
(1) early concatenation: a decoder Ψ takes as input the concatenation
of the condition vector C and the latent noise vector X ∼ N(0, Id), and
outputs an image Y . (2) late concatenation: a decoder takes as input only
the latent noise vector X ∼ N(0, Id), and outputs an image Y , in which
the condition C is concatenated with the output of an intermediate layer.
Ψ2 is the sub-network after concatenation, while Ψ1 is the sub-network
before concatenation.

deviation of p0. See Figure 4(1) for an illustration. As to
the “late concatenation”, we first encode the image Y to an
intermediate result with spatial dimension a × a by an encoder
Φ1(Y ), which consists of several layers of convolutions and
ReLU non-linear transformations, and then we replicate the one-
hot vector C spatially and perform a depth concatenation with
the intermediate result. The value function is defined by another
encoder Φ2([Φ1(Y ), C]) plus −‖Y ‖2/2s2, in which the encoder
takes as input the concatenated result [Φ1(Y ), C] and outputs a
scalar by performing several layers of convolutions and ReLU non-
linear transformations. See Figure 4(2) for an illustration. Detailed
network configuration will be discussed in the section of each
experiment.

Fig. 4. Network architecture of solver (category-to-image synthesis).
(1) early concatenation: an encoder Φ takes as input the depth con-
catenation of the spatially replicated condition vector C and the image
Y , and outputs a scalar. The value function f(Y,C; θ) is defined as
Φ([Y,C])−‖Y ‖2/2s2. (2) late concatenation: an encoder takes as input
only the image Y , and outputs the negative energy, in which the condition
C is concatenated with the output of an intermediate layer. Φ2 is the
sub-network after concatenation, while Φ1 is the sub-network before
concatenation.

4.1.2 Conditional image generation on grayscale images
We first test our model on two grayscale image datasets, such as
MNIST [38] and fashion-MNIST [39]. The former is a dataset
of handwritten digit images, and the latter is a dataset of fashion
product images. Each of them consists of 70,000 28× 28 images,
each of which is associated with a label from 10 classes. In each
dataset, 60,000 examples are used for training and the rest are
for testing. We learn our model on each of them respectively,
conditioned on their class labels that are encoded as one-hot vectors.
Since these two datasets are similar in number of classes, image
size, data size, and image format (i.e., grayscale), we use the same
model for them.

We adopt the setting of “early concantenation” introduced in
section 4.1.1 for the initializer. To be specific, g(X,C;α) is a
generator that maps the 1 × 1 × 138 concatenated result (Note
that the dimension of X is 128, and the size of C is 10.) to a
28× 28 grayscale image by 4 layers of deconvolutions with kernel
sizes {4, 4, 4, 4}, up-sampling factors {1, 2, 2, 2} and numbers
of output channels {256, 128, 64, 1} at different layers. The last
deconvolution layer is followed by a tanh operation, and each of
the others is followed by batch normalization and ReLU operation.

We adopt the setting of “late concatenation” introduced in
section 4.1.1 for the solver. Specifically, Φ1(Y ) consists of 2
layers of convolutions with filter sizes {5, 3}, down-sampling
factors {2, 2} and numbers of output channels {64, 128}. The
concatenated output is of size 7× 7× 138. (Note that the number
of the output channels of Φ1 is 128, and the size of C is 10.)
Φ2([Φ1(Y ), C]) is a 2-layer ConvNet, where the first layer has
256 3× 3 filters, and the last layer is a fully-connected layer with
100 filters.

We use Adam [40] to optimize the solver with initial learning
rate 0.0008, β1 = 0.5 and β2 = 0.999, and the initializer with
initial learning rate 0.0001, β1 = 0.5 and β2 = 0.999. The mini-
batch size is 300. The number of paralleled MCMC chains is 300.
The number of Langevin dynamics steps is l = 16. The step size
δ of Langevin dynamics is 0.0008. The standard deviation of the
residual in the initializer is σ = 0.3, and the standard deviation
s of the reference distribution p0 in the solver is 0.016. We run
1,600 epochs to train the model, where we disable the noise term
in Langevin dynamics after the first 100 epochs.

Figure 5 shows some of the generated samples conditioned on
the class labels after training on the MNIST dataset. Each column
is conditioned on one label and each row is a different generated
sample. Figure 6 shows the results for the fashion-MNIST dataset.
The qualitative results show that our method can learn realistic
conditional models.

To quantitatively evaluate the learned conditional distribution,
we use “Fréchet Inception Distance” [41] (FID) score as a metric
to measure the dissimilarity between the distributions of the
observed and the synthesized examples. Specifically, we compute
the distance between feature vectors extracted from observed and
synthesized examples by a pre-trained Inception model [42], with
the following formula

FID = ||µ̃− µ||2 + Tr
(

Σ̃ + Σ− 2(Σ̃Σ)1/2
)
,

where V ∼ N(µ,Σ) and Ṽ ∼ N(µ̃, Σ̃) are the 2,048-dimensional
feature vectors of the observed and synthesized examples, respec-
tively. They are the outputs taken as the activations from the
global spatial pooling layer of the Inception model. We can fit a
multi-variate Gaussian to feature vectors {Vi} and {Ṽi} separately,
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Fig. 5. Generated MNIST handwritten digits. Each column is conditioned
on one class label and each row is a different synthesized sample. The
size of the generated images is 28× 28.

Fig. 6. Generated fashion MNIST images. Each column is conditioned
on one class label and each row is a different synthesized sample. The
size of the generated images is 28× 28.

to obtain means µ, µ̃ and variances Σ, Σ̃ for the observed and
synthesized distributions respectively. A lower FID score implies
better qualities of the synthesized images.

To compute FID score, we sample 10,000 examples from the
learned conditional distribution by first sampling the class label
C from the uniform prior distribution, and X from N(0, Id), then
the initializer and the solver model cooperatively generate the
synthesized example from the sampled C and X . Table 1 shows
a comparison of FID scores of different methods on two datasets.
Our method achieves better results than other conditional and
unconditional baseline methods in terms of generation quality
evaluated by FID. Those baselines include GAN-based, flow-based,
and variational inference methods.

Figure 7 displays some examples of the synthesized images at
different training epochs along with the corresponding FID scores.
The images shown are generated by the solver. The images at the
same position of 5× 5 image matrix of different training epochs
share the same condition C , i.e., the class label. We can find that as
the cooperative training progresses, the synthesized images become
more and more realistic and the FID scores become lower and
lower. Additionally, the learned connection between the condition
(i.e., class label) and the target (i.e., image) becomes more and

more accurate in the sense that when the model converges, even
though the appearances of the synthesized images vary at different
epochs, they are always consistent with their input conditions.

TABLE 1
The Fréchet Inception Distance (FID) scores of different models trained
on MNIST and fashion-MNIST datasets, the smaller the FID, the better

the performance.

Model MNIST fashion-MNIST

un
co

nd
iti

on
al

GLO [43] 49.60 57.70
VAE [44] 21.85 69.84
BEGAN [45] 13.54 15.90
EBGAN [46] 11.10 41.32
GLANN [47] 8.60 13.10
WGAN [48] 7.07 28.17
LSGAN [49] 6.75 14.72
DCGAN [12] 4.54 8.22
InfoGAN [50] 28.09 -
GLF [51] 5.80 10.30

co
nd

iti
on

al

CGlow [52] 29.64 -
CAGlow [52] 26.34 -
VCGAN [53] - 13.8
CVAE-GAN [54] - 15.9
CVAE [55] 20.00 36.64
ACGAN [56] 12.55 49.11
CGAN [11] 5.91 11.92
CCoopNets (ours) 4.50 8.20

We study the influences of different choices of some hyper-
parameters, such as the number of dimension d of the latent space
X in the initializer, the number of Langevin refinement steps
l, and the step size δ of each Langevin. Figure 8 depicts the
influences of varying d, l and δ, respectively, while training on
fashion-MNIST dataset. Each curve represents the testing FID
scores over training epochs. We observe that (1) the quality of
synthesis decreases with decreasing d. (2) the more the number of
MCMC refinement steps, the stabler the learning process, and the
more time-consuming the refinement process of the solver. With a
small l, e.g., 1 or 8, the cooperative learning tends to fail easily at
the early stage of training because the slow-thinking solver distills
an insufficient refinement process to the initializer such that the
latter can not provide good initial solutions for the former. Figure
8(b) shows that the learning curves for l = 1 (in blue) and l = 8
(in orange) are terminated early due to failures occurred during
training. Table 2 shows a comparison of computational time per
epoch with different numbers of Langevin steps l and different
numbers of latent dimensions d. A choice of l = 16 or 32 appears
reasonable. The influence of d on the computational time is not
significant. (3) A large Langevin step size allows the model to learn
faster to generate high quality images, at the cost of arriving on a
sub-optimal synthesis of images. A smaller Langevin step size may
allow the model to generate more realistic images but it may take
more Langevin steps.

4.1.3 Conditional image generation on Cifar-10
We also test the proposed framework on Cifar-10 [57] object dataset,
which contains 10-class 60,000 training images of 32× 32 pixels.
Compared with the MNIST dataset, Cifar-10 contains training
images with more complicated visual patterns.

As to the initializer, we adopt the “late concatenation” setting.
Specifically, Ψ1(X) is a decoder that maps 100-dimensional
X (i.e., 1 × 1 × 100) to an intermediate output with spatial
dimension 8× 8 by 2 layers of deconvolutions with kernel sizes
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t = 0 (325.78) t = 10 (308.87) t = 20 (239.74) t = 30 (139.48) t = 40 (80.33) t = 50 (73.48)

t = 100 (32.61) t = 300 (10.47) t = 500 (10.08) t = 800 (8.91) t = 1000 (8.43) t = 1280 (8.20)

Fig. 7. Image generation by the models at different training epochs. For each epoch t, 25 examples of synthesized images are displayed. The
numbers in parentheses are the corresponding FID scores that reflect the qualities of the synthesized images. The images at the same position of
image matrix of different training epochs are generated from the same condition.
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(a) number of latent dimension (b) number of Langevin steps (c) step size of Langevin refinement

Fig. 8. Model analysis on fashion-MNIST dataset. (a) Influence of the number of latent dimension d of the fast-thinking initializer. We set l = 16 and
δ = 0.0008. (b) Influence of the number l of Langevin refinement steps by the slow-thinking solver. We set d = 64 and δ = 0.0008. (c) Influence of
the step size δ of Langevin refinement of the slow-thinking solver. We set d = 128 and l = 16.

TABLE 2
Comparison of computational time (in seconds) per epoch with different
numbers of Langevin refinement steps and different numbers of latent
dimensions for class-conditioned image generation on fashion-MNIST

dataset. The running times were recorded in a PC with an Intel i7-6700k
CPU and a Titan Xp GPU.

l = 1 l = 8 l = 16 l = 32 l = 64

d = 8 8.98 20.38 26.88 46.74 86.93
d = 32 9.23 20.21 27.04 46.95 86.95
d = 64 9.12 20.10 27.55 47.22 87.06
d = 128 9.37 20.50 27.76 48.62 86.92

{4, 5}, up-sampling factors {1, 2} and numbers of output channels
{256, 128} at different layers from top to bottom, respectively. The
condition C is a 10-dimensional one-hot vector to represent the
class. Ψ2([Ψ1(X), C]) is a generator that maps the 8× 8× 138
concatenated result to a 32 × 32 × 3 image by 2 layers of
deconvolutions with kernel sizes {5, 5}, up-sampling factors {2, 2}
and numbers of output channels {64, 3} at different layers.

We adopt the “late concatenation” setting for the solver. Φ1(Y )
consists of 2 layers of convolutions with filter sizes {5, 3}, down-
sampling factors {2, 2} and numbers of output channels {64, 128}.
The concatenated output is of size 8× 8× 138. Φ2([Φ1(Y ), C])
is a 2-layer bottom-up ConvNet, where the first layer has 256 3× 3
filters, and the last layer is a fully connected layer with 100 filters.

We use the Adam for optimization. The initial learning rates for
the solver and initializer are 0.002 and 0.0064, respectively. The
joint models are trained with mini-batches of size 300. The number
of paralleled MCMC chains is also 300. The number of Langevin
dynamics steps is 8. The step size δ of Langevin dynamics is
0.0008. We run 2,000 epochs to train the model, where we disable
the noise term in Langevin dynamics in the last 1,500 ones.

Figure 9 shows the generated object patterns. Each row is
conditioned on one category. The first two columns display some
typical training examples, while the rest columns show generated
images conditioned on labels. We evaluate the learned conditional
distribution by computing the inception scores of the generated
examples. Table 3 compares our framework against two baselines,
which are two conditional models based on GANs. The proposed
model performs better than the baselines. We also found that in the
proposed method, the solution provided by the initializer is indeed
further refined by the solver in terms of inception score.

4.1.4 Disentangling style and category

To test the inference power of the fast-thinking initializer, which is
trained jointly with the slow-thinking solver, we apply the learned
initializer to a task of style transfer from an unseen testing image in
one caegory onto other categories. The models are first trained on
SVHN [64] dataset that contains 10 classes of digits collected from
street view house numbers. The network architectures of initializer
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Fig. 9. Generated Cifar-10 object images. Each row is conditioned on
one category label. The first two columns are training images, and the
remaining columns display generated images conditioned on their labels.
The image size is 32×32 pixels. The categories are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck from top to bottom.

TABLE 3
Inception scores of different models trained on Cifar-10 dataset. The

larger the inception score, the better the performance.

Model Inception score

un
co

nd
iti

on
al PixelCNN [58] 4.60

PixelIQN [59] 5.29
DCGAN [12] 6.40
WGAN-GP [60] 6.50
ALI [61] 5.34

co
nd

iti
on

al CGAN [62] 6.58
Conditional SteinGAN [63] 6.35
initializer (ours) 6.63
solver (ours) 7.30

and solver are similar to those used in Section 4.1.2, except that
the training images in this experiment are RGB images and they
are of size 32 × 32 pixels. With the learned initializer, we first
infer the latent variables X corresponding to that testing image.
We then fix the inferred latent vector, change the category label
C, and generate the different categories of images with the same
style as the testing image by the learned model. Given a testing
image Y with known category label C, the inference of the latent
vector X can be performed by directly sampling from the posterior
distribution p(X|Y,C;α) via Langevin dynamics, which iterates

Xτ+1 = Xτ + sUτ+

s2

2

[
1

σ2
(Y − g(Xτ , C;α))

∂

∂X
g(Xτ , C;α)−Xτ

]
.

(20)

If the category label of the testing image is unknown, we need
to infer both C and X from Y . Since C is a one-hot vector, in
order to adopt a gradient-based method to infer C, we adopt a
continuous approximation by reparametrizing C using a softMax
transformation on the auxiliary continuous variablesA. Specifically,
let C = (ck, k = 1, ...,K) and A = (ak, k = 1, ...,K), we
reparametrize C = v(A) where ck = exp(ak)/

∑′
k exp(a′k), for

k = 1, ...,K, and assume the prior for A to be N(0, IK). Then
the Langevin dynamics for sampling A ∼ p(A|Y,X) iterates

Aτ+1 = Aτ + sUτ+

s2

2

[
1

σ2
(Y − g(Xτ , v(A);α))

∂

∂A
g(X, v(Aτ );α)−A

]
.

(21)

Figure 10 shows 10 results of style transfer. For each testing
image Y , we infer X and C by sampling [X,C] ∼ p(X,C|Y ),
which iterates (1) X ∼ p(X|Y,C), and (2) C = v(A) where
A ∼ p(A|Y,X), with randomly initialized X and C. We then
fix the inferred latent vector X , change the category label C, and
generate images from the combination of C and X by the learned
initializer. This experiment demonstrates the effectiveness of our
model in style and category disentanglement.

Fig. 10. Style transfer. The trained initializer can disentangle the style and
the category such that the style information can be inferred from a testing
image and transferred to other categories. The first column shows testing
images. The other columns show style transfer by the model, where the
style latent variable X of each row is set to the value inferred from the
testing image in the first column by the Langevin inference. Each column
corresponds to a different category label C.

4.2 Experiment 2: Image→ Image

4.2.1 Network architecture
We study learning conditional distributions for image-to-image
translation by our framework. The network architectures of the
models in this experiment are discussed as follows.

As to the initializer, a straightforward design is presented below:
we first sample X from the Gaussian noise prior N(0, Id), and we
encode the condition image C via an encoder Φ(C). The image
embedding Φ(C) is then concatenated to the latent noise vector X .
After this, we generate target image Y by a decoder Ψ([X,Φ(C)]).
The initializer g(X,C;α) is the composition of Φ and Ψ. With
Gaussian noise X , the initializer will produce stochastic outputs as
a distribution. See Figure 11(1) for an illustration of the structure.
However, in the initial experiments, we found that this design
was ineffective in the sense that the generator learned to ignore
the noise and produce deterministic outputs. Inspired by [10], we
design the initializer by following a general shape of the U-Net
[65] with the form of dropout [66], applied on several layers,
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as noise that accounts for stochasticity in this experiment. A U-
Net is an encoder-decoder structure with skip connections added
between each layer j and layer M − j, where M is the number
of layers. Each skip connection performs a concatenation between
all channels at layer j and those at layer M − j. In the task of
image-to-image translation, the input and output images usually
differ in appearance but share low-level information. For example,
in the case of translating sketch image to photo image, the input
and output images are roughly aligned in outline except that they
have different colors and textures in appearance. The addition of
skip connections allow a direct transfer of low-level information
across the network. Figure 11(2) illustrates the U-Net structure
with dropout as the initializer for image-to-image translation.

Fig. 11. Network architecture of initializer (image-to-image translation).
(1) naive straightforward design: the condition image C is first encoded
to a vector representation by an encoder Φ(C), and then the vector is
concatenated with the Gaussian noise vector X. A decoder Ψ takes as
input the concatenated vector [X,Φ(C)] and outputs the target image Y .
(2) U-Net with dropout: an encoder-decoder structure (Φ is the encoder
and Ψ is the decoder.), with skip connections added between each layer j
and layer M − j, where M is the number of layers. Each skip connection
concatenates all channels at layer j and those at layerM−j. The dropout
is applied to each layer in the decoder Ψ to account for randomness X.

As to the design of the solver model, we first perform channel
concatenation on target image Y and condition image C, where
both images are of the same size. The value function f(Y,C, θ)
is then defined by an encoder Φ([Y,C]) plus −‖Y ‖2/2s2, in
which Φ([Y,C]) maps the 6-channel “image” to a scalar by several
convolutional layers. Leaky ReLU layers are added between two
consecutive convolutional layers. Figure 12 shows an illustration
of the network architecture of the solver.

4.2.2 Semantic labels→ Scene images
The experiments are conducted on CMP Facade dataset [67]
where each building facade image is associated with an image
of architectural labels. The condition image and the target image
are of the size of 256× 256 pixels with RGB channels. Data are
randomly split into training and testing sets.

In the initializer, the encoder Φ consists of 8 layers of
convolutions with a filter size 4, a subsampling factor 2, and

Fig. 12. Network architecture of solver (image-to-image translation).
Channel concatenation is performed on the condition image C and
the target image Y . The resulting 6-channel “image” is then fed into
an encoder Φ([Y,C]). Φ plus −‖Y ‖2/2s2 serves as the value function
f(Y,C; θ) in the slow-thinking solver model.

the numbers of channels {64, 128, 256, 512, 512, 512, 512, 512}
at different layers. Batch normalization and leaky ReLU (with slope
0.2) layers are used after each convolutional layer except that batch
normalization is not applied after the first layer. The output of Φ is
then fed into Ψ, which consists of 8 layers of deconvolutions with a
kernel size 4, an up-sampling factor 2, and the numbers of channels
{512, 512, 512, 512, 256, 128, 64, 3} at different layers. Batch
normalization, dropout with a dropout rate of 0.5, and ReLU layer
are added between two consecutive deconvolutional layers, and a
tanh non-linearity is used after the last layer. The U-Net structure
used in this experiment is a connection of the encoder Φ and
the decoder Ψ, along with skip connections added to concatenate
activations of each layer j and layer M−j. (M is the total number
of layers.) Therefore, the numbers of output channels of Ψ in the U-
Net are {1024, 1024, 1024, 1024, 512, 256, 128, 3}. The dropout
that is applied to each layer of Ψ implies an implicit latent vector
X in the initializer. Such an implicit X is too complicated to infer.
However, there is no need to infer this X with the cooperative
training, which can get around the difficulty of the inference
of any complicated forms of latent factors by MCMC teaching.
It other words, in each iteration, the learning of the initializer
Ψ([X,Φ(C)]) is based on how the MCMC changes the initial
examples generated by the initializer from the condition image C
and the randomness X due to dropout.

In the solver model, we first perform a channel concatenation
on target image Y and condition image C , where both images are
of size 256 × 256 × 3. The value function is then defined by a
4-layer encoder Φ([Y,C]), which maps a 6-channel “image” to a
scalar as the value score by 3 convolutional layers with numbers
of channels {64, 128, 256}, filter sizes {5, 3, 3} and subsampling
factors {2, 2, 1} at different layers (from bottom to top), and one
fully connected layer with 100 single filers. Leaky ReLU layer is
used between two consecutive convolutional layers.

Adam is used to optimize the solver with an initial learning
rate 0.007, and the initializer with an initial learning rate 0.0001.
We set the mini-batch size to be 1. The number of paralleled
MCMC chains is also 1. We run 15 Langevin steps with a step size
δ = 0.002. The standard deviation of the residual in the initializer
is σ = 0.3. The standard deviation of the reference distribution in
the solver is s = 0.016. We run 3,000 epochs to train our model.

We adopt random jitter and mirroring for data augmentation
in the training stage. As to random jitter, we first resize the input
images from 256 × 256 to 286 × 286, and then randomly crop
image patches with a size 256× 256.
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In this task, we found it beneficial to feed both the refined
solutions and the observed ground truth solutions to the initializer,
when we update the initializer at each iteration. The solver’s job
remains unchanged, but the initializer is tasked to not only learn
from the solver {Ỹi} but also to be near the ground truth solutions
{Yi}. We add an extra `1 loss to penalize the distance between
the output of the initialzer and the ground truth solution. [10] also
finds this strategy effective in training a GAN-based conditional
model for image-to-image translation.

As to the computational time, compared with GAN-based
method, our framework has additional l = 15 steps of Langevin.
However, the Langevin is based on gradient, whose computation
can be powered by back-propagation, so it is not significantly
time-consuming. To be concrete, our method costs 32.7s, while
GAN-based method costs 30.9s per epoch for training in a PC with
an Intel i7-6700k CPU and a Titan Xp GPU in this experiment.

Figure 13 shows some qualitative results of generating building
facade images from the semantic labels. The first column displays
5 semantic label images that are unseen in the training data. The
second column displays the corresponding ground truth images
for reference. The results by a baseline method, pix2pix [10], are
shown in the third row for comparison. pix2pix is a conditional
GAN method for image-to-image mapping. Since its generator also
uses a U-Net and is paired up with a `1 loss, for a fair comparison,
our initializer adopts exactly the same U-Net structure as in [10].
The fourth to sixth columns are results generated by some variants
of the conditional GAN method, including cVAE-GAN [71], cVAE-
GAN++ [71] and BicycleGAN [71]. The seventh and eighth rows
show the generated results conditioned on the semantic label
images shown in the first row by the learned initializer and solver,
respectively. We can easily observe qualitative improvements by
comparing the outputs of the solver with the ones of the initializer.

We perform human perceptual tests for evaluating the visual
quality of synthesized images. We randomly select 30 different
human users to participate in these tests. We compare two methods
in each test, where each participant is first presented two images at
a time, which are results generated by two different methods given
the same conditional input, and then asked which one looks more
like a real image. We have total 36 pairwise comparisons in each
test for each participant. We evaluate each method by the ratio that
the images generated by the method are preferred. As shown in
Table 4, the results generated by our method are considered more
realistic by the human subjects.

TABLE 4
Human perceptual tests for image-to-image synthesis.

methods preference ratio
CCoopNets (ours) / cVAE-GAN [71] 0.625 / 0.375
CCoopNets (ours) / cVAE-GAN++ [71] 0.687 / 0.313
CCoopNets (ours) / BicycleGAN [71] 0.628 / 0.372
CCoopNets (ours) / pix2pixel [10] 0.720 / 0.280

4.2.3 Sketch images→ Photo images
We next test the model on CUHK Face Sketch database (CUFS)
[68], where for each face, there is a sketch image drawn by an
artist based on a photo of the face. We learn to recover the color
face images from the sketch images by the proposed framework.
The network design and hyperparameter setting are similar to the
one we used in Section 4.2.2, except that the mini-batch size and
the number of paralleled MCMC chains are set to be 4.

Figure 14(a) displays the face synthesis results conditioned
on the sketch images. Columns 1 through 4 show some sketch
images as input conditions, while columns 5 through 8 show the
corresponding recovered images obtained by sampling from the
learned conditional distribution. From the results, we can see that
the generated facial appearance (color and texture) in each output
image is not only reasonable but also consistent with the input
sketch face image in the sense that the face identity in each sketch
image remains unchanged after being translating to a photo image.

Figure 14(b) demonstrates the learned manifold of sketch
images (condition) by showing 5 examples of interpolation. For
each row, the sketch images at the two ends are first encoded into
the embedding by Φ(C), and then each face image in the middle
is obtained by first interpolating the sketch embedding, and then
generating the images using the initializer with a fixed dropout, and
eventually refining the results by the solver via finite-step Langevin
dynamics. Even though there is no ground truth sketch images
for the intervening points, the generated faces appear plausible.
Since the dropout X is fixed, the only changing factor is the sketch
embedding. We observe smooth changing of the generated faces.

We conduct another experiment on UT Zappos50K dataset [67]
for photo image recovery from edge image. The dataset contains
50k training images of shoes. Edge images are computed by HED
edge detector [69] with post processing. We use the same model
structure as the one in the last experiment. Figure 15 shows some
qualitative results of synthesizing shoe images from edge images.

4.2.4 Image inpainting
We also test our method on the task of image inpainting by learning
a mapping from an occluded image (256 × 256 pixels), where a
mask with the size of 128 × 128 pixels is centrally placed onto
the original version, to the original image. We use Paris streetview
[70] and the CMP Facade dataset. In this case, C is the observed
part of the input image, and Y is the unobserved part of the image.
The network architectures for both initializer and solver, along with
hyperparameter setting, are similar to those we used in Section
4.2.2. To recover the occluded part of the input images, we only
update the pixels of the occluded region in the Langevin dynamics.

We compare our method with some baselines, including
pix2pix, cVAE-GAN, cVAE-GAN++ and BicycleGAN. Table 5
shows quantitative results where the recovery performance is
measured by the peak signal-to-noise ratio (PSNR) and structural
similarity measures (SSIM), which are computed between the
occlusion regions of the generated example and the ground truth
example. The batch size is one. Our method outperforms the
baseline methods using adversarial training or variational inference
in this recovery task. Table 6 reports a comparison of model
complexity with the baseline methods on CMP Facade dataset in
terms of number of model parameters and running time.

Figure 16 shows a comparison of qualitative results of different
methods on CMP Facade dataset. Each row displays one example.
The first image is the testing image with a hole that needs to be
recovered. The second image is the ground truth image. The third to
sixth images are the inpainting results obtained by pix2pix, cVAE-
GAN, cVAE-GAN++ and BicycleGAN, respectively. The seventh
and the last images are the results recovered by the initializer and
the solver, respectively.

5 CONCLUSION

Solving a challenging problem usually requires an iterative al-
gorithm. This amounts to slow thinking. The iterative algorithm
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condition ground truth pix2pix cVAE-GAN cVAE-GAN++ BicycleGAN initializer (ours) solver (ours)

Fig. 13. Generating images conditioned on architectural labels. The first column displays 5 condition images with architectural labels. The second
column displays the corresponding ground truth images for reference. For comparison, the third to sixth columns show the generated results by
baselines pix2pix, cVAE-GAN, cVAE-GAN++, and BicycleGAN, respectively. The seventh and eighth columns present the generated results obtained
by the learned initializer and solver respectively. The training images are of the size 256× 256 pixels.

TABLE 5
Comparison with the baseline methods for image inpainting on the CMP

Facade dataset and Paris streetview dataset.

Model CMP Facades Paris streetview
PSNR SSIM PSNR SSIM

cVAE-GAN [71] 19.43 0.68 16.12 0.72
cVAE-GAN++ [71] 19.14 0.64 16.03 0.69
BicycleGAN [71] 19.07 0.64 16.00 0.68
pix2pix [10] 19.34 0.74 15.17 0.75
CCoopNets (ours) 20.47 0.77 21.17 0.79

TABLE 6
Comparison of model complexity with the baseline methods for image

inpainting on CMP Facade dataset.

Model Size Time
] of parameters sec / epoch

cVAE-GAN [71] 60.85M 12.06
cVAE-GAN++ [71] 64.30M 18.40
BicycleGAN [71] 64.30M 25.60
pix2pix [10] 57.89M 12.62
CCoopNets (ours) 55.84M 22.43

usually requires a good initialization to jumpstart it so that it can
converge quickly. The initialization amounts to fast thinking. For
instance, reasoning and planning usually require iterative search

or optimization, which can be initialized by a learned computation
in the form of a neural network. Thus integrating fast thinking
initialization and slow thinking sampling or optimization is very
compelling. This paper addresses the problem of high-dimensional
conditional learning and proposes a cooperative learning method
that couples a fast thinking initializer and a slow thinking solver.
The initializer initializes the iterative optimization or sampling
process of the solver, while the solver in return teaches the
initializer by distilling its iterative algorithm into the initializer. We
demonstrate the proposed method on a variety of image synthesis
and recovery tasks. Compared to GAN-based method, such as
conditional GANs, our method is equipped with an extra iterative
sampling and optimization algorithm to refine the solution, guided
by a learned objective function. This may prove to be a powerful
method for solving challenging conditional learning problems.
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(a) Recover faces from sketches (b) Sketch interpolation

Fig. 14. (a) Sketch-to-photo face synthesis. Columns 1 through 4: sketch images as conditions. Columns 5 through 8: corresponding face images
sampled from the learned models conditioned on sketch images. (b) Sketch interpolation: Generated face images by interpolating between the
embedding of the sketch images at two ends, with fixed dropout. Each row displays one example of interpolation.
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Fig. 15. Results on edges → shoes generation, compared to ground
truth. The first row displays the edge images. The second row shows the
corresponding ground truth photo images. The last two rows present the
generated results obtained by the initializer and the solver, respectively.
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